
Applying the correction term for the field strength along a direction to the original vector
potential expression

A⃗ =
µ0qv⃗

4πr
(
1 + ṙ

c

)
, and this is the retarded vector potential originating fromaparticle, the Liénard‑Wiechert vec‑
tor potential. Since this relation should apply to the scalar potential as well, the expression
for the retarded scalar potential is

ϕ =
q

4πε0r
(
1 + ṙ

c

)
. With this, the derivation of the retarded potential due to themoving source was done which
Liénard and Wiechert first derived. Based on this, now is the turn to deal with the retarded
field due to the moving source, which was originally intended to be dealt with.

5.4 Feynman’s Formula
Let’s go back to the starting point, Feynman’s formula.

E⃗ =
q

4πε0

[
e′r
r′2

+
r
′

c

d

dt

(
e′r
r′2

)
+

1

c2
d2

dt2
e′r

]
This expression looks simple at first glance, but when we look into it, we realize that it is

not as easy to recognize as we think. The term that differentiates once with respect to time is
not a single term, but a term that is a combination of two terms by division, and then the term
that differentiates twice with respect to time appears. If we try to interpret it, many hidden
terms pop up. At first glance, this formula appears to be an expression in the form of a differ‑
ential equation to express a certain principle, rather than a form that can be used immediately
for practical purposes.

In the case of the formulas before Feynman, they are in the form of integral equations, but
I consider that they are not formulas as answers, but rather as notations as the research plan
of the peoplewhowrote them, and have little value. In the case of differential equations, even
if they are not solved, they often have useful physical meaning, but they are still mostly un‑
certain without a solution. Then again, the specific solution of a differential equation is often
finding the integral of a certain function. After all, in the case of a differential or integral equa‑
tion in physics, the meaning becomes clear when not only the physical equation but also the
solution is clearly presented.
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However, the peculiarity of this formula is that it does not appear to be trying to describe
any particular physical principle. There is no description of any special principle, other than
that it provides some support for what I described in the picture of the directionality of elec‑
tromagnetic radiation. It means that Feynman saw it just as a consequence of ordinary elec‑
tromagnetic laws. The onlymention Feynmanmakes of the derivation is ”What is the formula
for the electric andmagnetic field produced by one individual charge? It turns out that this is
very complicated, and it takes a great deal of study and sophistication to appreciate it.” When
I first read this passage, I mistook Feynman’s praise for someone else who derivated the for‑
mula, and, even looked for the original derivation. Since Feynman himself was the original
derivation of the formula, it’s a pretty self‑congratulatory statement. But, as a result, I think
it’s a great achievement of Feynman’s that deserves to be recognized.

This formula later reappears, in a different form, in Griffiths’ book on electromagnetism,
which is one of the main textbooks used in modern universities and will be dealt with again
later. It does not appear in Purcell’s book, published in the 1950s, which was the standard
textbook on electromagnetism before Feynman. It is rumored that Feynman first succeeded
in deriving the formula around 1950.

However, even though I don’t know the exact meaning of the formula, at first glance it
seems to be a clue to the Laplace problem I’ve been struggling with, so I decided to dig this
formula as something meaningful.

First of all, I will get rid of the unfamiliar expression of the derivative of a unit vector. The
definition of a unit vector is e′r = r⃗′

r′ , which can be used interchangeably. If apply this and de‑
compose and write it, it becomes

E⃗ = q
4πε0

[
e′r
r′2

+ r
′

c
d
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(
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)
+ 1
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]
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)
Still, the implications are not easily reached. However, instead of unit vectors disappear‑

ing, familiar physical quantities such as position vectors, velocity vectors, and acceleration
vectors appeared so that became a little more specific. The notation of the corresponding
physical quantity with ′ in the formula is a notation for the point of view, and it seems neces‑
sary to remove that part. In addition, the application of dr⃗′

dt = −v⃗′ during formula derivation
may need to be explained to those who are not familiar with the change in expression de‑
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pending on the coordinate system perspective. In fact, in traditional electromagnetism texts,
explanationsof retardedpotentials start from this part, but I omitted it. Although itwas said to
be the retarded potential, it was actually a potential caused by amoving source, so it was not
necessary to cover that part. Although it was a tradition of the past, from the point of view of
the more refined knowledge of the present, I did not intend to follow the cumbersome expla‑
nation that contains the complex process of searching for the truth before the refinement of
the past but also contains unnecessary superfluous concepts. The concept of negative num‑
bers or zero is now learned in elementary school, but the process in which it was discovered
in the past was not an elementary school process, and it is the same as seeing that it is not
essential to start learning from the process of discovery. But now I’ve reached a point where I
can’t move on without dealing with that. There was a part of me that put it off because I had
to draw a picture that required a complex explanation.

Physical quantitiesmarkedwith ′ in Feynman’s formulamean, that although Feynman did
not explain it directly, it is generally used in physics as a notation according to the subjec‑
tive point of view of an observer on the other side. In other words, these expressions imply
that there is an observer’s subjective position and that it is not always a universally valid, ob‑
jective, absolute space‑time. In fact, since the appearance of the theory of relativity, it has
been revealed that there is nouniversally valid, objective, absolute criterionof spaceand time.
Therefore, in order to describe an event, it became onemust describe how it is observed from
at least two different perspectives in order to fully describe it. Thus, it is true that physics after
the theory of relativity has becomemore difficult than before when only one description was
required in the absolute coordinate system.

However, after the advent of relativity theory, even though there is no universally valid
absolute space‑time, it is still possible andmust be possible, to have a third perspective in ad‑
dition to theperspective of observer 1 and theperspective of observer 2. And, it is the position
of most physics narratives that such a third perspective is appropriately selected and used as
if it were an absolute coordinate system of the past.

For this problem, it might be a good idea to start by explaining that third point of view.
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Figure 71: The third point of view

If amoving object and an observer exist on the same plane, at a position O that is between
the two points and is perpendicularly far from the plane, the distance between the two po‑
sitions is the same so that at point O, both positions can be observed simultaneously. It is
similar to the concept of absolute time and space. This point of view is the original coordinate
system without any mark, and the ′ ed coordinate system is defined based on this point of
view.

However, this perspective is not always possible in practice. In this illustration, the O per‑
spective is possible because the moving object is always moving perpendicular to the O per‑
spective, which allows for simultaneous comparison of the moving object’s perspective and
′’s perspective, but in reality, the moving object can move out of the plane of the illustration
above, which breaks the property of the O perspective that allows for simultaneous viewing
of themoving object and ′’s perspective. However, the fact that this perspective is not always
possible in practice does not cause problems, as it is only intended to define the relationship
between the ′ coordinate system and themoving object coordinate system, and is not used in
actual computations.
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Consider a moving object and the ′ coordinate system that is observed from this perspec‑
tive.

The events seen by observer O in ’The third point of view’ figure are as follows.

Figure 72: A moving charge Q and an observer at point P

I almost copied Feynman’s drawing, but I removed the unmarked r vectors from his draw‑
ing because it will not be used at all anymore and I don’t think it is helpful. Instead, I added
the symbol r⃗τ .

Similar to Feynman’s illustration, this is a picture of a charge Q traveling a random path
from S to E, experiencing a velocity v and an acceleration ”a” at a certain instant in time. The
time at this moment is τ. If the distance between point Q and point P is rτ , then the electro‑
magnetic influence from Q takes rτ

c to travel to point P, reaching and affecting it at time t’. At
this time, the distance between Q and P as observed from point P is r′. So, it can be seen that
it is the same r⃗τ = r⃗′, and there is no need to be distinguished.

In this case, when we observe various physical quantities and events in Q from a point P,
the notation time can be called t’. And, if the time in Q when the event occurs is called τ, then
the relationship between the two is τ = t′ − r′τ

c . The use of both superscript and subscript for
r is a temporary way of saying that both are redundant at the same time since both are the
same in either case.
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Looking at other physical quantities based on these, first, in the case of v, it is v⃗τ = −d−→rτ
dτ

and v⃗′ = −dr⃗′

dt′ from each point of view. The ‑sign is because the starting point of the r vector
is themoving charge that is the source of the electric field, not the location where the electric
field is measured. This use of the opposite definition from the usual case is also a convention
originally usedby Feynman tomatch thedirectionof theposition vector r and the electric field
vector E.

Among the physical quantities observed at point P, we will examine the case of v’, whose
characteristics can bemost clearly known. We can see that nothing special happenswhen the
v vector is perpendicular to the r vector and the distance betweenQ and P is constant, but this
is not the case when the v vector has a component of the r vector and the distance between
the two points changes.

Figure 73: Microdisplacement of R

Note that in the figure above, since dr’ is a small change r⃗′t′ and r⃗′t′+dt′ are actually parallel.
In this case, the time it has takenwhen the distance from the sourceQ charge changes by dr is,
of course, the time dτ at Q. τ is the time inQ, but not the timewith relativistic correction in the
Q inertial frame. It is simply time passing at the same rate from position Q as from position O,
the ’third point of view’. The ’third point of view’ illustrationwas necessary to explain that this
is a real physical quantity that can be used in the calculation. The dr⃗′ event at time τ from the
thirdpoint of view is transformed intoaneventduring dt′ basedon time t′whenobserved from
point P. The description at point P will deal with only the stationary state here, but relativis‑
tic corrections in themoving state will have to bemade if necessary according to the physical
quantity to be seen. However, in fact, evenwhen point Pmoves, electromagnetic phenomena
are already relativistic in nature, so there is no need for additional relativistic corrections to
describe physical phenomena caused by the electromagnetic field felt by the object at point
P observed from the point of view of O.
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Comparing the timemeasured from the twoperspectives under these conditions, it can be
seen that it would be dt′ < dτ in the case of the figure above. Observation at point P will show
that the intervals of Q events from the τ perspective will be densely blue‑shifted at the rate of
the classical redshift equation, and accordingly, it can be predicted that all time‑related phys‑
ical quantities such as velocity and acceleration will look different. Since the inertial system
which observes, belongs to the O point of view, r itself is measured the same regardless of the
Q or P point of view.

Iwill now list the relationships betweenphysical quantities in these two frameworkswhich
I will call the ′ and τ frameworks, respectively, but I will denote t′ by t for compatibility with
Feynman’s formula. Since the difference between t′ and time t is always constant and the
absolute observer’s view is not used anyway, removing ′ is no problem. And, in the τ frame, τ
notationwill be omitted in all other physical quantities except time τ itself. Regarding physical
quantities other than time, this is because the physical quantities in the τ framework are ordi‑
nary physical quantities that use the same time intervals as the physical quantities in the third
objective observer’s viewpoint, the temporal absolute coordinate framework, as described
earlier. For example, for ṙ, the speed at which Q is getting closer or farther away, the range of
possible values is −c < ṙ < c, which is the same as the normal concept, but ṙ′ the apparent
speed from the ′perspective at point P, is not a real physical quantity but an apparent physical
quantity with a range of−∞ < ṙ′ < c

2 . Furthermore, since the temporary absolute coordinate
system described earlier is only introduced to illustrate the concept andwill never be used di‑
rectly in actual calculationsorphysical quantities, there is noneed to leavea representation to
distinguish between them. Therefore, in practice, note that v⃗ → v⃗τ , a⃗→ a⃗τ , ṙ → ṙτ , r̈ → r̈τ and
so on. Even if there is a correspondence relationship not marked here, all physical quantities
are described in either the ′ frame or the τ frame, and all physical quantities without ′ nota‑
tion except for t are described in the τ frame. However, the terms related to r as r′ = rτ , r⃗

′ = r⃗τ

are indistinguishable in both frameworks, as depicted in the figure ’Amoving charge Q and an
observer at point P’.

First, the conversion relationship of physical quantities necessary for the analysis of Feyn‑
man’s formula and its derivation are presented as follows. Since there are many necessary
items, individual descriptions are omitted. Instead, the derivation process was described in
detail as much as possible.
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τ = t− r
c , r′ = r, r⃗′ = r⃗
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c

)
1

1+ ṙ
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By substituting these relations into the Feynman formula to eliminate the ′ expressions, I
have got the following.
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c

)
− 1

c2
r̈

(1+ ṙ
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c

− 1
c2

r̈

(1+ ṙ
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c

)
− r̈

c2
1

1+ ṙ
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The last line was expressed with the more familiar physical quantities of velocity and ac‑
celeration, using the following relational expression of the definition of centrifugal force.

ṙ = −v⃗ · r⃗r = −v∥
r̈ =

v2⊥
r − a⃗ · r⃗r

ṙ2 + rr̈ = v2∥ + v2⊥ − a⃗ · r⃗
= v2 − a⃗ · r⃗

Themeaningof Feynman’s formula is now intuitively clear. Thedirectionandmagnitudeof
distance vectors, velocity vectors, and acceleration vectors are familiar and easy‑to‑use con‑
cepts. It is unknown why Feynman did not use this expression in the first place, but I will dis‑
cuss the possible reason later.
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Before that, I would like to look at Griffiths’ book, which is often used as a textbook on
electromagnetics, which is probably one of the most famous among many documents deal‑
ing with this similar formula after Feynman. In the book published in the 1990s, the following
formula, which seems to be a different formula from the Feynman formula at first glance, ap‑
pears. There is nomention of Feynman, and from the description of the derivation process, it
seems thatGriffiths himself derived the formulahimself. Thederivationprocess is also slightly
different from Feynman’s method, which I have investigated and reconstructed. Of course,
they are essentially the same.

E⃗ = q
4πε0

r
(r⃗·u⃗)3 ((c

2 − v2)u⃗+ r⃗ × (u⃗× a⃗))

In fact, this is not as it is, and the r in the above formulamust be replacedwith the cursive r
for which I could not find the font to display. It is presumed that the reason for the notation is
that hewanted to introduce a different concept of r, whichwill be covered later. For now, I will
transform this formula into a more readable form using the definition u⃗ ≡ cr̂ − v⃗ provided by
Griffith and the vector algebra formula a⃗× (⃗b×c⃗) = (⃗a·c⃗)⃗b− (⃗a ·⃗b)c⃗, whichwouldbe familiar now.
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As it turns out, as
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, it can be seen that it is identical to the Feynman formula. It is written as if the notion of R is
slightly different, but the notion of R cannot be essentially different in formulas that are iden‑
tically organized in this way. It seems that Griffiths thought that the r used in the formula was
not an ordinary r, to avoid dealing with the troublesome concepts in the derivation method
that will be discussed later.
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Feynman made no mention in his book of his formula derivation methods. I don’t know
whether there are any other unknown documents besides Feynman’s book, but even when
searching for other materials such as Griffiths’ book, only fragmentary materials were found,
andno complete and specificmethodof deriving the formulawas found. However, therewere
hints that appeared in common, and reconstructing Feynman’s formula from them gave me
some idea ofwhy Feynmandid not officially announce his derivationmethod. Now Iwill show
the derivation of Feynman’s formula.

First, to explain the hint that appears in common, it is a redefinition of the ∇ symbol. To
introduce that redefinition, it is,

∇r = ṙ′∇t = ṙ′

ṙ
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c
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(
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c

)
= ṙ∇τ

Derivationandexplanationof themeaningof these conversion formulaswill bepostponed
for a while, and for now, I will deal with it only as the deformation of the ∇ operation and a
given rule for how to represent it in the τ framework and in the ′ framework.

The basic formula is

E⃗ = −∇ϕ− ∂A⃗

∂t

the electric field expression among the solutions of Maxwell’s equations obtained above,
and
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q

4πε0r
(
1 + ṙ
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and
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)
the equations obtained for the retarded potential. Substituting the retarded potential

equations into the electric field expressions using ε0µ0 =
1
c2

results in
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This can be computed as it is, but it gets a little complicated, and Feynman probably com‑

puted this equation in the ′ frame. To do so, this equation must be converted into physical
quantities of the ′ frame, which has already been done once in the opposite direction. How‑
ever, the following conversion equationmust be added to the previous conversion equations.

v⃗ = −dr⃗
dτ = −dr⃗

dt
dt
dτ

= v⃗′

1− ṙ′
c

Executing the conversion results in,

E⃗ = −q
4πϵ0

∇
 1
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ṙ′
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+ 1
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∂
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r′
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ṙ′
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∇
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1
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∂
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v⃗′

r′

))
Based on this equation, if the modified definition of the ∇ operation introduced above is

applied,
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ṙ′

r′c

)
+ 1

c2

(
a⃗′

r′ −
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ṙ′

r′2

(
1− ṙ′
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)
It can be confirmed that the result is the same as the decomposition result of the Feynman

formula.
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In fact, it can be obtained directly from the τ frame without having to convert it to the ′
frame beforehand. However, the following termsmust be precomputed.

∇ṙ = ∇ dr
dτ = ∇
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ṙ′ 1
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c

)
= 1

1− ṙ′
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+ ṙ′

c
(
1− ṙ′
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Applying this,
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c )

2
∂
∂t

(
r + rṙ

c

))]
= −q

4πϵ0

[
−1

(r+ rṙ
c )

2

(
∇r +∇

(
rṙ
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+ ṙ2

c2

))
v⃗
c −

ra⃗
c2

]
= q

4πϵ0r2(1+ ṙ
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c

)
+ rr̈ṙ
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c

(
1− rr̈

c2
− ṙ2
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We can verify that it is calculated directly.

However, there is a pitfall in the above computation.

Readers who have followed the discussion of the Feynman formula so far in this bookmay
have noticed that these explanations are proceeding in reverse from the usual explanation
order. It was a way of continuing to postpone the explanation of the most important point,
doing the computations first, and then re‑entering the derivation of the fundamental formula.
Now it is the time to confess why I had to do that.

In the preparation computation of the last calculation, there is a problem with the part
that started with ∇ṙ = ∇ dr

dτ = ∇
(
dr
dt

dt
dτ

)
= ∇

(
ṙ′ 1

1− ṙ′
c

)
and was later treated as d

dt∇r. Orig‑
inally, it would be more natural to derive as ∇ṙ = ∇ dr

dτ = d
dτ∇r from the beginning in the τ

frame. However, the problem is that the results of the two paths are different. Originally, tak‑
ing out the derivative with respect to the time from ∇ was a computational technique based
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onClairaut’s theorem that it did notmatter if the order of the derivativewas reversed. The fact
that the result changes for the same calculation is equivalent to saying that the transformed
∇ is no longer an ordinary derivative. And because of this, it is not just the derivative with re‑
spect to τ that cannot be reordered and taken out of the ∇ operation, but also the derivative
with respect to t, it became not clear whether it is justified to reorder it.

And also before, youmay recall that the derivation of the definition of∇rwas the one that
I put off. Looking back, I only presented the definition with

∇r = ṙ′∇t = ṙ′

ṙ
r⃗
r

= ṙ
1+ ṙ

c

1
ṙ
r⃗
r = r⃗

r
1

1+ ṙ
c

=
1− ṙ′

c
ṙ′ ṙ′ r⃗r = r⃗

r

(
1− ṙ′

c

)
= ṙ∇τ

and passed by without explanation. Now, to confess about the derivation method, in fact, it
is actually all there is. Precisely, the first line is the whole of the derivation process. The rest
is just a list of various variant expressions for convenient use. However, the thought process
that led to the first line would require explanation.

The definition of the∇ operation is

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ

according to the definition introduced by William Rowan Hamilton, who was a mathemati‑
cian but also contributed to physics. I’m going to assume that you’ve already learned about
the history of this operation and its physical meaning in high school. Because thinking about
complicated meanings makes only my head hurt, and mathematics, especially algebra, is a
system of thought that is ’designed’ to give correct answers if we follow the formal rules, even
if we don’t care about it. In science, these are basic concepts that are learned in high school,
or at the latest in the first year of college. And the more elemental it is, the more difficult it is
to discuss its meaning. Originally, at the beginning of this book, I decided to target the book’s
readership to science high school students or college beginners, but that is only for physics,
and formathematics, the explanation of thesemathematical foundations is beyondmy capa‑
bilities, so I will omit it. For now, I will just look at the form of these operations. In fact, that
should be enough for most readers. The above operation can be transformed as follows ac‑
cording to the basic algebraic rules. I will just use r instead of f this time so that we don’t have
to hesitate for the next step.
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∇r = ∂r
∂x x̂+ ∂r

∂y ŷ +
∂r
∂z ẑ

= dr
dt

∂t
∂x x̂+ dr

dt
∂t
∂y ŷ +

dr
dt

∂t
∂z ẑ

= dr
dt

(
∂t
∂x x̂+ ∂t

∂y ŷ +
∂t
∂z ẑ
)

= dr
dt∇t

= ṙ′∇t

The final ′ notation is a straightforward jump to the notation for our particular problem.
Meanwhile, there is another well‑known value for ∇r. This is the value ∇r = r⃗

r , which is di‑
rectly obtained from the mathematical definitions of ∇ and r. If we are going to apply this
value to the present problem, we will have to consider the following two cases.

First of all, when Q is stationary or c is infinite, we can see that it converges to this value. In
that case, it can be inferred that the value of ∇t is of course∇t = 1

ṙ′
r⃗
r . The next thing to con‑

sider now is if Q is moving and c is not infinite. In this case, in fact, themost common thought
to consider is that∇ is a differential operator, not a physical quantity such as time or distance,
so it should remain unchanged without being affected by such things. However, the problem
with such a method is that it fails to derive a physically consistent electromagnetic field cor‑
rected for special relativity based on Maxwell’s equations.

If we look at Purcell’s book, we shall see that there is no solution for charges in arbitrary
motion that appearedafter Feynman, but there is ananalysis for charges in uniform linearmo‑
tion already done. I will not deal with that directly. Purcell’s formula used relativistic concepts
of length contraction and time delay to estimate the properties of an electric field traveling at
a constant velocity, but I will not attempt to verify Purcell’s formula, as I have not done so. As
for the question of how to trust Purcell’s formula without testing it, Feynman, as an explana‑
tion of his formula, showed that it satisfies the conditions Purcell demanded. So did Griffiths.
And I’m going to mention it briefly as well. In fact, even without computations like Purcell’s,
thought experiments alone can show that the important properties of Purcell’s formula are
relativistically indispensable. So, I don’t think that Purcell’s theory, which is incomplete com‑
pared to Feynman’s, is indispensable knowledge just because it was the path of development.
This is because the theories introduced later after Purcell convey knowledge in amore refined
form, and by studying them, we can obtainmore comprehensive and clearer knowledgewith‑
out having to retrace the chaotic path of previous theories. Although it is important to look at
the background of the development of theories because it gives us a sense of the direction in
which physical theories have developed and an opportunity to think about the philosophical
roots of physical theories, my limitations in this book will inevitably impose some restrictions
on how far and in what detail I can look back into the surrounding knowledge. In the case of
Purcell’s formula, I will present only its results.
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E⃗ =
q

4πε0r2p

1− β2

(1− β2 sin2 θ)3/2
r̂p

This is themost commonlyknown formulationof thefielddue toauniformlymovingcharge,
analyzed based on special relativity. There are, of course, other ways to approximations or
verifications with thought experiments that can be used for individual situations. Purcell’s
formula is just borrowed because it is a simple way to express the conclusion. The problem
at the time was that it was derived from a special relativistic analysis of the electric field, and
no specificmethod of deriving it in terms of Maxwell’s equationswas known, and it could only
deal with the relatively simple situation of constant velocity linear motion, not arbitrary mo‑
tion. I will not go into the derivation of this formula, but I will briefly discuss the minimum
conditions required for an electric field due to a charge in a uniform linear motion to be con‑
sistent with relativity, which is implicit in this formula andwhich the electric field formulation
must adhere to.

Figure 74: Relative perspective

First, let us consider the situation where the electric field E is observed while passing by
the stationary charge Q at point P with a constant velocity.

It is a conclusion of classical electrodynamics that the electric field felt from the position
passing through point P is directed in the Q direction. However, looking at this again from
relativity, from that point of view, the observer at point P is stationary, and the electric charge
Q moves at a constant velocity of v, feeling the electric field Eτ created at the position of Qτ
in the past. However, if the electric field by the moving source is the same as the electric field
by the stationary source, the position of Q obtained by feeling it becomes the past position,
Qτ, and is different from the current position, Qp. In addition, if we look at it that way, the Qτ
position is the position of Q that P sees through the phenomenon of velocity aberration in the
light when P is moving, and P cannot see the actual position of Q through the light when it is
moving, but when Q is moving, the position of Q seen through light and the position of Q felt
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by the electric field are the same, which is a phenomenon that negates relativity. Therefore,
this cannot be correct and must be corrected. In order for relativity to be correct in this case,
just as the case of P wasmoving, there alsomust be some process such that P sees the wrong
position of Q through light and the electric field feels the true position of Q in the case that P
is at rest and Q is moving at a constant velocity. Meanwhile, the position of Q as observed by
light, whether P is moving or Q is moving, does not reflect the true current position of Q. This
is due to the finite speed of light if Q is moving, and to the existence of the phenomenon of
velocity aberration in the light if P is moving. Under the assumption that the electric field Eτ
originating at Qτ should look like Ep reflecting the actual position of the charge Qp, Purcell’s
formula is the calculation of the strength in each direction, taking into account the effects of
length contraction and time dilation.

In the previous sentence, there is a slightly complicated reason for expressing ’feel’ rather
than ’measurement’. It is expressed that themeasurement or observation from the third point
of view, which has been mentioned above, is felt from the point of view of P. Because, from
the point of view of P, if the Q position is measured through the measurement of the elec‑
tric field and light is emitted in that direction, the light also does not hit Qp, because of the
Doppler beaming effect if P moves, and because the light is missed by moving Q before the
light reaches Q if Q is moving. In fact, the distinction between the movement of P and the
movement of Q in the first place is already an expression that has already introduced the third
point of view. In the third point of view, it is expressed as ’feel’ that the focus of the motion
change of P by the field is directed toward Qp in any case. In this case, the proviso ’except for
the influence of the magnetic field’ is still attached.

If we check whether Feynman’s formula satisfies the above condition through the case of
uniform linear motion where no acceleration exists, it is

E⃗ = q

4πε0r2(1+ ṙ
c )

2

(
1

1+ ṙ
c

(
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)
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1
1+ ṙ

c

(
1− v2

c2
+ a⃗·r⃗

c2

)
v⃗
c −

ra⃗
c2

)
=

q
(
1− v2

c2

)
4πε0r2(1+ ṙ

c )
3

(
r⃗
r −

v⃗
c

)
and it can be simply shown that it is consistent with Purcell’s formula.

At first glance, the formulas look different, but if we note that rp in the Purcell formula is a
vector representing the current direction and distance of the charge, and r or rτ in the Feyn‑
man formula is a vector representing the past direction and distance of the charge, fact that
the direction of the electric field according to the two formulas is the same can be seen in the
following figure.
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Figure 75: Comparison with the Purcell formula

It can be seen at a glance that r⃗p in the Purcell formula is the vector from the current po‑
sition of the charge Q to the observation point P, which is in the same direction as r⃗τ − rτ

c v⃗ in
the Feynman formula when a=0. However, the magnitude of the vectors needs to be verified
by further calculation, but it can be guessed without further calculation that it would be very
difficult for the overall magnitudes of vectors to be different with even the same direction ob‑
tained in conceptually independent calculations.

In order to comparewhether Purcell’s formula q
4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p andFeynman’s formula

E⃗ = q

4πε0r2(1+ ṙ
c )

2

((
1− v2

c2
+ a⃗·r⃗

c2

)
(r̂− v⃗

c )
1+ ṙ

c

− ra⃗
c2

)
are the same equationwhen acceleration a = 0, some

preliminary preparation is required.

In the ’Comparison with Purcell Formula’ figure, we can see rτ sinϕ = rp sin θ → rp
r = sinϕ

sin θ
.

And, we can see the rτ cosϕ+ rp cos θ = rτ
v
c →

rp
r = β−cosϕ

cos θ as well.

From these, equation sinϕ
sin θ

= β−cosϕ
cos θ → sinϕ

β−cosϕ = tan θ → θ = arctan sinϕ
β−cosϕ can be solved

to obtain the expression of θ.

And, it would be a good idea to keep in mind the sin(arctan a) = a√
a2+1

rule.

Apply these rules to the following equations to see if they are true.

261



q
4πε0r2p

1−β2

(1−β2 sin2 θ)3/2
r̂p = q

4πε0r2(1+ ṙ
c )

2

(
1− v2

c2

1+ ṙ
c

r̂ −
1− v2

c2

1+ ṙ
c

v⃗
c

)
r̂p

r2p(1−β2 sin2 θ)3/2
=

r̂− v⃗
c

r2(1+ ṙ
c )

3

r(r̂− v⃗
c )

rp

r2p(1−β2 sin2 θ)3/2
=

r̂− v⃗
c

r2(1+ ṙ
c )

3

1
r3p(1−β2 sin2 θ)3/2

= 1

r3(1+ ṙ
c )

3

r
(
1 + ṙ

c

)
= rp(1− β2 sin2 θ)1/2

r
(
1− v

c cosϕ
)

= rp

√
1− β2 sin2 θ

1− v
c
cosϕ√

1−β2 sin2 θ
=

rp
r

1− v
c
cosϕ√

1−β2 sin2 θ
= sinϕ

sin θ

1+β2 cos2 ϕ−2β cosϕ
1−β2 sin2 θ

= sin2 ϕ

sin2 θ
1+β2 cos2 ϕ−2β cosϕ

sin2 ϕ
= 1−β2 sin2 θ

sin2 θ
1+β2 cos2 ϕ−2β cosϕ

sin2 ϕ
= 1

sin2 θ
− β2

1+β2 cos2 ϕ−2β cosϕ+β2 sin2 ϕ

sin2 ϕ
=

( sinϕ
β−cosϕ

)2
+1( sinϕ

β−cosϕ
)2

1+β2−2β cosϕ
sin2 ϕ

=
sin2 ϕ

β2+cos2 ϕ−2β cosϕ+1

sin2 ϕ

β2+cos2 ϕ−2β cosϕ
1+β2−2β cosϕ

sin2 ϕ
= β2+1−2β cosϕ

sin2 ϕ

It was shown that Feynman’s formula agrees with Purcell’s formula in the absence of ac‑
celeration.

On the other hand, if the calculation is performed as strictly as possible without using the
technique of transforming the differential operator used in the derivation of the Feynman for‑
mula, it is immediately apparent that

E⃗ =
q

4πϵ0r2
(
1 + ṙ

c

)2 ((1− ṙ2

c2

)
r⃗′

r
−
(
1− r̈

c2

)
v⃗

c
− ra⃗

c2

)
is not consistent with the Purcell formula, which is a representative relativistic interpretation
of the electric field. First of all, the direction of the electric field does not point to the current
position of the charge moving at a constant velocity. However, since the advent of mathe‑
matics that twist spacetime, many people may try to attempt to distort spacetime with the
method, rather than give up on the approach. On the other hand, whether Feynman’s idea
of abandoning this formula altogether and trying to touch the definition of differential opera‑
tors is easy, or whether it is a brilliant idea that was difficult to come up with after manymore
attempts than I have briefly introduced here, I can’t exactly feel the atmosphere of 1940s elec‑
tromagnetism, so it is difficult to guess the difficulty of Feynman’s idea. But it is not an easy

262



idea by anymeans tome. However, while the ideamay be difficult, its execution is not partic‑
ularly difficult.

Earlier, it was shown that ∇r can be expressed as ∇r = ṙ′∇t = ṙ′

ṙ′
r⃗
r . If we try to see what

transformations are possible thatwould cause this expression to change value due to the con‑
dition of a finite speed of light when moving while the value remains as it is in a state of rest,
there is one candidate that immediately comes to mind. That is ∇r = ṙ′

ṙ
r⃗
r that changed the

expression in the ′ frame of the denominator in ṙ′

ṙ′ , which is always 1 in the final expression, to
the expression in τ. This is a method by directly substituting the characteristics of the ′ frame
and the τ frame, which differ by the finite speed of light, and it can be seen at a glance that
this is the only valid conversion that produces the required effect. There is no such thing as a
formula derivation. If the definition of ∇ is something that can be influenced by the property
of this universe, the finite speed of light, it is clear what the effect must be. And, simply by in‑
troducing this definition, an expression consistentwith Purcell’s formula is computed at once.

However, this method is not mathematically right. It was confirmed that the∇ defined in
this way loses a property of a differential operator that is independent of the order of differ‑
entiation, which means that ∇ used for physical phenomena is no longer a normal differen‑
tial operator. Manipulating a differential operator to make it no longer a differential operator
cannot be said mathematically valid. The first derivation that obtained a physically correct
formula in the ′ frame was purely coincidental. Actually, it’s not a coincidence, it’s just that
Feynman used the ′ template as a standard, so I just followed it without thinking. However,
themethodof calculation using the τ frame,which should bemathematically equivalent, pro‑
duces different results. The method of direct calculation using the τ frame that I presented
also involved temporarily transforming to the ′ frameand then reverting back during the inter‑
mediate stages of each transformation. What we can know from this is that the∇ operator is
a pseudo‑differential operator that only operates as a real differential operator in the ′ frame.
Additionally, it is recommended that the physical quantities be applied to r directly. This is
undoubtedly a new property of mathematics. And this is not all.

So far, I have only discussed electric fields and have not discussed magnetic fields. Orig‑
inally, I came to discuss electromagnetic fields in order to deal with Maxwellian gravity and
Laplace’s problem, so themagnetic field was not initially a priority. However, since I have dis‑
covered amathematical anomaly in the derivation of electric fields, there arises a need to also
investigate the magnetic field.
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Themagnetic field is defined by the equation using the vector potential.

B⃗ = ∇× A⃗

= q
4πϵ0c2

∇×
(

v⃗
r(1+ ṙ

c )

)
= q

4πϵ0c2
∇× v⃗′

r

And, it is also

B⃗ =
1

c2
E⃗ × v⃗

for a moving observer P according to the law of electromagnetic induction. It is also

B⃗ =
q

4πε0c2r2
v⃗ × r⃗

r

if the Biot‑Savart law the first expression for a magnetic field, is rewritten, for a single charge.
The opposite sign of the expressions in the Biot‑Savart law and the law of electromagnetic in‑
duction is only the difference betweenwhether the observer ismoving orwhether the charge,
which is the source of the electric field, is moving. Here, of course, I am solving for the first
approach, which is considered the most general. The other expressions are for the purpose
of comparative verification. This is because the Biot‑Savart law is an approximation at slow
speeds that need to be corrected through relativity, and the electromagnetic induction law
is a relativistically rigorous law that is not an approximation in terms of magnetic fields, but
the E used in the electromagnetic induction law needs a relativistic correction, such as Pur‑
cell’s formula. On the other hand, the first method, obtained by solving Maxwell’s equations
directly, does not require the complicated and obscure relativistic corrections that Purcell’s
method of physical intuition requires, and, as an added bonus, it yields expressions for gen‑
eral motion that are not restricted to constant velocity motion.

On the other hand, as a result of calculations using Purcell’s formula and relativistic correc‑
tions, such as transforming a situation inwhich amagnetic field produced by amoving charge
is measured by a stationary observer into a situation in which an electric field produced by a
stationary charge is measured by amoving observer and amagnetic field is felt, it was known
that themagnetic field can also be written as the following expression. This was the situation
until about 1950 when the Feynman formula was calculated.

B⃗ =
r̂

c
× E⃗

The r used here is the familiar rτ and r′ at the same time. And, E is the E that can be ob‑
tained by Purcell’s formula or Feynman’s formula, which are slightly different directions from
r. This is already a relativistically correct expression. However, the calculation does not take
into account the effect of the acceleration included in Feynman’s formula, but to say the re‑
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sult in advance, the expression does not change when the effect of acceleration is included.
I’ll explain how to get this.

First, the following vector algebra basic formula is needed.

∇× (uv⃗) =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

uvx uvy uvz

∣∣∣∣∣∣∣
=
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∂uvz
∂y −

∂uvy
∂z

)
x̂+

(
∂uvx
∂z −
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∂x

)
ŷ +

(
∂uvy
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∂y

)
ẑ

=
(
duvz
dt

∂t
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duvy
dt

∂t
∂z

)
x̂+

(
duvx
dt

∂t
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dt

∂t
∂x

)
ŷ +

(
duvy
dt

∂t
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duvx
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∂t
∂y

)
ẑ

=
(
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∂t
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∂t
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)
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+
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∂t
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)
ŷ

+
(
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∂y

)
ẑ

=
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∂t
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(
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(
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∂t
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∂t
∂y

)
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+
(
u̇vz

∂t
∂y − u̇vy

∂t
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)
x̂+

(
u̇vx
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∂z − u̇vz

∂t
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)
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(
u̇vy
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∂t
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(
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)
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(
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)
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(
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∂u
∂x

)
ŷ +

(
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∂u
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∂u
∂y

)
ẑ

= u∇× v⃗ − v⃗ ×∇u

The reason for writing down the derivation process is that it’s a technique that will be used
frequently, so I want you to get used to it, and I want to show that it’s mathematically justified
up to this point.

Using this, if I introduce the calculation process first, it is as follows. If you see that intro‑
ducing the result first is an unavoidable choice when the process is not completely justifiable,
it is correct.
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B⃗ = q
4πϵ0c2

∇× v⃗′

r

= q
4πϵ0c2

(
1
r∇× v⃗′ − v⃗′ ×∇1

r

)
= q

4πϵ0c2

(
1
r

d
dt(∇× r⃗) + v⃗′ × r⃗
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1
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1
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We can see that it is
B⃗ =

r̂

c
× E⃗

in the ′ frame. Moving this to the τ frame, it is as follows
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c

(
1− ṙ2
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Likewise, it can be seen that it is accurately converted to

B⃗ =
r̂

c
× E⃗

in the τ frame.
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The rule calculated in this way is as follows.

First, we saw that the ∇ operator in the previous electric field computation is no longer
a true differential operator, and in the τ framework Clairaut’s rule no longer applies, but in
the ′ framework it still behaves as if it were a true differential operator. In addition, since the
definition of r is the same in all perspectives, it was found that it is safe to always use r as the
starting point from which other definitions such as velocity or acceleration are derived. And,
if this guess is not correct, all these calculations are meaningless from the beginning.

So, the magnetic field was calculated based on r in the ′ frame, and the part substituted
with∇× r⃗ = v⃗′

c ×
r⃗
r in the middle is based on the following speculation.
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And, ∇t = 1
c
r⃗
r . Here, strange speculation emerges. ∇ for time is not the same as the

∇t = 1
ṙ
r⃗
r in the previous∇r. Of course, the previous casewas also a conjecture based on phys‑

ical intuition, and the only basis for doing so was that it was the simplest and most plausible
candidate, but the result is that such a guess is not even allowed to be consistent. ∇t = 1

ṙ
r⃗
r

cannot be used at all. If it is used, according to the above calculation, it shows a result of
∇ × r = v⃗′

ṙ ×
r⃗
r , which appears as infinity under certain conditions. If an infinity appears in a

physical formula, it is not different from saying that it is a catastrophe unless the conditions
underwhich the infinity appears are actually impossible conditions. As infinity appearswithin
the range that is slower than the speed of light, this formula is not a consideration at all.

On the other hand, in its original vector algebraic definition, it is∇× r = 0. However, sub‑
stituting that definition into B⃗ = ∇ × A⃗ yields only the Biot‑Savart formula. However, it is
already known through the result of Purcell’s relativistic analysis that the result is an approx‑
imation in the case of v ≪ c and cannot be exact. Therefore, it cannot be ∇ × r = 0, and it
is clear that it must have some value. By the way, the physical reason why the mathematical
definition of the∇ operationmust bemodified appears more clearly in the calculation of the
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magnetic field. It became clear that themodification had to be inevitable, and then consider‑
ing what to do with ∇t, the condition was simple. The only other vector that can be used to
calculate the vector product with v is the r vector itself, and it is 0 at slow speeds and becomes
r⃗
r at high speeds approaching the speed of light. This is a condition that can be easily created,
it is∇t = 1

c
r⃗
r . If we test this, we can get the above result that is physically correct and mathe‑

matically impossible to explain. This is the gist of my process of reconstructing the Feynman
formula.

Is this approachmathematically valid? There’s noway it could be. Mathematically, this ap‑
proach is not valid. The definition of∇as a differential operator has already been determined
mathematically, but this approach treats ∇ as if it were an unknown function and redefines
it. As a result, the characteristics of ∇ as a differential operator, which include the ability to
change the order of differential operators, are maintained in some frames but not in others,
and even in cases where they are maintained, it cannot be guaranteed that they will be. This
approach suggests amathematically invalid story that it produced the correct resultwhen cal‑
culated under the belief that the characteristics are maintained.

But, I believe the result is correct even if it is not mathematically justified. The resulting
Feynman formula has already been verified to be the answerwhen relativistically interpreting
the electromagnetic field. Of course, Feynman’s formula has not yet been experimentally ver‑
ified. To determine the truth of such a formula experimentally, It is insufficient to accelerate
an individual particle to a relativistic speed. One would need to accelerate an entire exper‑
imental setup to relativistic speeds, or at the very least, a substantial amount of material at
relativistic speeds, which is not a technologically easy task. In the 21st century, papers about
the experiment on the Feynman formula have recently been published, but it does not seem
to be accepted as conclusive evidence yet. Unless it is a really ingenious experiment, it would
be difficult to prove it experimentally with the current technology level. I predict that direct
experiments will be possible only when technology is developed enough for humans to live in
outer space. I do not consider this an experiment to be done on Earth because a mistake in
accelerating a large amount of matter to near‑light speeds required for the experiment would
result in a nuclear explosion‑like accident.

Nonetheless, I believe that the Feynman formula is correct, and I can only say that it is
attributed purely to physical intuition aside from the agreement with other relativistic inter‑
pretations such as Purcell’s formula.
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The intuition to choose the latter between
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c

(
1− v2

c2
+

a⃗ · r⃗
c2

)
r⃗

r
− 1

1 + ṙ
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is unexplainable, but it certainly exists. Physical intuition originally existed beforemathemat‑
ics. For example, the lawof universal gravitation, published in 1687, Coulomb’s law, published
in 1785, and theBiot‑Savart law, published in 1820, all have the inverse square law in common,
but it was not until the introduction of the ∇ operator by Hamilton in 1837 that the inverse
square lawwasmathematically explained by introducing the concept of potential. Of course,
therewaswork by Gauss and Lagrange before that, but not yet the concept of a potential field
or wave.

The inverse square law was not mathematically derived but was guessed intuitively and
applied to actual phenomena in the beginnings of physics. In fact, a complete explanation
still does not exist and never will, as the question ’why’ can be infinitely repeated but the hu‑
man ability to answer is finite. It is necessary to stop asking the question ’why’ at some point,
and it is important to stop at the right position. Determining where that position is a realm
of physical intuition that cannot be fully explained. Anything under that limit, which can be
explained perfectly, falls within the realm of mathematics.

I heard that it was mathematically proven that mathematics cannot be perfect by Russell
andGödel about a hundred years ago. It would be rather strange ifmathematics, which is ulti‑
mately inherent in such imperfections, could explain nature perfectly. Whether nature is per‑
fect or imperfect, an imperfect narrative system cannot fully describe an object. In the case of
this problem, the concept ∇t, which is arguably physically ambiguous, and even its substan‑
tive meaning is questioned, adapts its form in mathematical calculations to meet the physi‑
cal requirementswithin the boundswhere its expression does notmathematically contradict.
The result is a phenomenon in which, from one perspective, it still behaves as a differential
operator, while from another perspective, it loses its defining characteristics. This, I believe,
is a manifestation of mathematics’ inherent imperfection when used to describe physics. Is it
too hasty a judgment? Given that this pertains to the fundamental nature of the electromag‑
netic field, it is plausible that such mathematical limitations may indeed come into play.
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Physics is obviously a discipline that leans very heavily on mathematics. Mathematics is
the expressionmethod of physics, and what cannot be expressed inmathematics is not a law
of physics. However, in the process of searching for a truly new law in physics, physical intu‑
ition works more than mathematics, and although the expression is mathematical, the pro‑
cess of finding the expression is not alwaysmathematical. Physics leans very heavily onmath‑
ematics, but it is not mathematics itself. Nature is certainly as mathematical as possible, but
not perfectly mathematical. Since mathematics itself is not perfect, it is natural that nature is
not perfectly mathematical.

However, this is not the end of this story. I see the essence of the Feynman formula as an
example of physical laws confronting the limits of mathematics, but I think Feynman, the dis‑
coverer himself, might have thought differently. If he had thought likeme, he would have had
no reason to hesitate in revealing the derivation process, incomplete though it may be, and
leaving that thought behind, but for some reason, he did not leave the record of the deriva‑
tion process of this important formula. In fact, I think he may have been reluctant to cause a
disturbance unnecessarily since the results aremore important than the derivation process in
this kind of basic law of physics. Or perhaps, rather than the incompleteness of mathematics,
he saw it as the incompleteness of the derivation process and postponed the presentation to
find a more complete method, which he ultimately could not find. Of course, I cannot know
Feynman’s thoughts for sure. From the insistence on the abbreviation of the formula in the ′
frame, it seems to be a similar view to mine, but it is impossible to know the thoughts of the
passed predecessor without any words. However, in Griffiths’ book, there is a dazzling math‑
ematical skill that makes me wonder whether it is Griffiths’ skill or Feynman’s skill that has
been transmitted.

I have no intention of explaining it the way Griffiths explains it. Frommy point of view, it is
a technique that gathers mathematical imperfections in one place and slyly covers them up,
so it is not possible to explain that aspect only by just repeating his words. Therefore, since
this is to be summarized and conveyed from my point of view, if you want to make a clearer
judgment on this matter, you will have to compare Griffiths’ book with my next explanation.

Griffiths’ book introduces tr, which looks like it is derived from

τ = t− r

c
= t− tr

and uses it to hide the problem of ∇t described above.
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Figure 76: Definition of ∇r

Looking at the figure ’definition of ∇r’, assuming that the information about the distance
betweenQandP is somephysical quantity that originates fromQand travels to P at the speed
of light, we can see that the slope of that quantitywith respect to distance is dy

dx = 1
1± v

c
. Replac‑

ing y with r to express this as a vector derivative in three dimensions, it is ∇r = 1
1+ ṙ

c

r⃗
r = ṙ′

ṙ
r⃗
r ,

giving us a basis for the value of ∇r that we had previously guessed. So far, this seems like a
pretty plausible solution.

And, the definition of −c∇tr = ∇r was added to the previous definition, and then, using
ṙ′ = ṙ

1+ ṙ
c

, that resulted in

∇tr =
−r⃗

rc− r⃗ · v⃗
=
−1
c

ṙ′

ṙ

r⃗

r

, and it is dτ = dt− dtr by definition. Since this is the case of addition between infinitesimals,
so it is dt = 0, that it is dτ = −dtr, then the result of
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∇× r⃗ =
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ŷ +

(
dry
dtr

∂tr
∂x −

drx
dtr

∂tr
∂y

)
ẑ
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ṙ′
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= v⃗ × 1
c

1
1+ ṙ

c

r⃗
r

= v⃗′

c ×
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r

is derived and used.

Has the previous lack of mathematical basis been completely resolved through this daz‑
zling result? I look suspicious. If the ∇ operation still acts as a true differential operator after
this transformation, then thismethodmay be justified, but, since it is a real differential opera‑
tor only in the ′ frame, the inconsistency that has been calculated as if nothing has happened
after the transformation remains unresolved, even if it is disguised as a plausible calculation.
It is mathematics that allows even the Ramanujan sum to be calculated using only plausible
calculations. Nevertheless, the cleverness of combining the two different representations of
∇t and concealing the incompleteness in the derivation using it is undoubtedly impressive.
Still, I prefer a crude way of revealing it rather than skillfully concealing it, if there is an imper‑
fection. If we keep hiding it because it doesn’t look good, later generations or even ourselves
may forget that such incompleteness ever existed, and that’s a regression. I think the funda‑
mental problem of modern physics lies in the excessive use of overly sophisticated mathe‑
matics. As an aside, I don’t like Griffiths’ method of leaving most of the solutions in his book
as practice problems without presenting the solution process directly to the reader. Would it
be too much of a leap to say that not showing the derivation in such an important problem
is a psychological trick that takes advantage of the fact that people who have succeeded in
following the solution process based on weak evidence have shared the leap in the solution
process and developed a bias toward the result? However, it is true that in a book written 30
years after Feynman, at least some explanation of the derivation and its basis is necessary.
There is pressure to show the derivation process and the basis for anything. It would be the
right of only Feynman, the first discoverer, to omit the derivation process and describe only
the results.
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Well, now that we have found how to calculate the electric field and even the magnetic
field generated bymoving charges through tedious andboring computations. Now it’s time to
go back to the original reason for this tedious computation, the solution to Laplace’s problem.

5.5 The solution of the Laplace problem
I will compute the Laplace problem in a previous binary star system more specifically. For
simplicity, I will use a binary star systemwith an exact circular orbit.

Figure 77: The Laplace problem in a binary star system

In a binary star systemcomposed of stars of the samemass, A andB, even if there are other
disturbance factors such as gravitational wave emission, it is safe to say that the two stars are
orbiting in exactly opposite positionswith the center of the orbit circle as the symmetry point.
In this case, if the gravity of star A, which departed at time τ in the past, arrives at star B at time
t, which is the present time, B moves from Bτ to Bt in the meantime. If c △ t = 2R cos θ is the
distance traveled the gravity at the speed of light, then v △ t = 2Rθ is the distance traveled by
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B. From this, it can be seen that
cos θ
c

=
θ

v
→ v

c
=

θ

cos θ
Since c is a constant, it can be utilized as an equation to find the value of θ given a certain v.

Since this equation contains a function that includes the transcendental function cosine
and cannot be solved algebraically, numerical calculation using a computer is required to ob‑
tain the value. In particular, in order to substitute the actual Earth’s orbital speed ormass, the
precision of numerical calculations is not enough with ordinary floating point numbers, and
arbitrary precision calculations are required.

There are several programs available for arbitrary precision computation, but there is no
public package that can calculate the numerical solution of this equation, so it is necessary to
program it directly. The Python package ’mpmath’ provides the functionality with the ’find‑
root’ function, but as of 2022, there is a serious problem of inaccurate calculation values due
to the floating‑point input issue, so it is not recommended to use Python for verification. It
is a problem common to all functions, and it is clear that other math packages such as friCAS
have no problems with the corresponding input, so it is a problem of the package.

The easiestway to simply check the reliability of the calculations in the package for Python
you are trying to use is to type a command such as ’mp.asin(mp.sin(0.1))’. You can see that
’mpmath’ doesn’t come out exactly 0.1 and the error starts to occur from the limit of floating
point precision. On the other hand, in a proper package, such as friCAS, you can see that the
answer of input ’asin(sin(0.1))’ is exactly 0.1

The main package used in this book, friCAS, performs arbitrary‑precision calculations by
default, but doesnot havea root‑finding function, andhas its ownprogramming functionbuilt
in, but it is inconvenient for me. Therefore, I have written the calculation function using the
computable‑reals package of Common Lisp, which was first introduced in 1989 and has been
verified reliable for a long time. In the computable‑reals package, there is no arcsin function,
but only the arctan function, sowecancheck that there is noproblemwith [atan‑r (sin‑r 1/10 /r
cos‑r 1/10)]. In computable‑reals, only integer and rational inputs are accepted, and floating‑
point inputs are not accepted.

If you are using a computer that is following along with the calculations in this book, then
you have already installed the necessary packages when you calculated the number of galax‑
ies in the universe. So all you need to do is run the following commands. The first command
extends the symbol table to redefine the operators of computable‑reals so that they can be

274



used in the SHNmacro. The second command is Newton’s method root‑finding function that
calculates the angle θ in radians from a given v/c. Finally, if you’re curious about howmany it‑
erations Newton’smethod takes to find the root using the conventional root‑finding function,
you can use the last function instead of the second one.

A caution inuse is thatNewton’s root‑findingalgorithmwasusedwhenwriting this routine,
but it is known that Newton’s root‑finding algorithmmay fail to find roots in certain cases and
fall into an infinite loop. In such a case, this is just a calculation routine made on the fly with‑
out anymeasures to escape from the infinite loop, so it should be used only when you can be
sure that the root can be found with Newton’s root‑finding algorithm like this problem.

Of course, the following programs can also be downloaded and used from GitHub (https:
//github.com/kycgit/gsimm).

Program nroot.lisp
(defparameter *symbol-table*
(list
'+ '(:s-type op :t-op + :arg-n 2)
'- '(:s-type op :t-op - :arg-n 2)
'* '(:s-type op :t-op * :arg-n 2)
'+r '(:s-type op :t-op +r :arg-n 2)
'-r '(:s-type op :t-op -r :arg-n 2)
'*r '(:s-type op :t-op *r :arg-n 2)
'× '(:s-type op :t-op * :arg-n 2)
'/ '(:s-type op :t-op / :arg-n 2)
'/r '(:s-type op :t-op /r :arg-n 2)
'÷ '(:s-type op :t-op / :arg-n 2)
'< '(:s-type op :t-op < :arg-n 2)
'<= '(:s-type op :t-op <= :arg-n 2)
'> '(:s-type op :t-op > :arg-n 2)
'>= '(:s-type op :t-op >= :arg-n 2)
'= '(:s-type op :t-op = :arg-n 2)
'/= '(:s-type op :t-op /= :arg-n 2)
'0- '(:s-type op :t-op 0- :arg-n 1)
'1/ '(:s-type op :t-op 1/ :arg-n 1)
'√ '(:s-type op :t-op sqrt :arg-n 1)
'inDeg '(:s-type op :t-op deg :arg-n 1)
'toDeg '(:s-type op :t-op radTodeg :arg-n 1)
'e^ '(:s-type op :t-op exp :arg-n 1)
'^ '(:s-type op :t-op expt :arg-n 2)
'e^r '(:s-type op :t-op exp-r :arg-n 1)
'^r '(:s-type op :t-op expt-r :arg-n 2)
':ra '(:s-type op :t-op rational-approx-r :arg-n 2)
'ln '(:s-type op :t-op log :arg-n 1)
'log '(:s-type op :t-op log :arg-n 2)
'ln-r '(:s-type op :t-op log-r :arg-n 1)
'log-r '(:s-type op :t-op log-r :arg-n 2)))

(defun nroot (F &optional dg)
(labels ((sign (x) (multiple-value-bind (a b c) (raw-approx-r x) a b c)))

(let ((pct *CREAL-TOLERANCE*)
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(gx 0)
eps)

(if dg nil (setq dg *print-prec*))
(setq *creal-tolerance* [ceiling (10 ^ dg log 2)])
(setq eps [1/2 /r (10 ^ dg)])
(loop while (not (= 0 (sign (funcall f gx))))

do (setq gx [eps *r 2 /r (funcall(f gx -r eps) -r funcall(f gx +r eps)) *r
funcall(f gx) +r gx]))

(setq *creal-tolerance* pct)
gx)))

(defun nrootp (F &optional dg)
(labels ((sign (x) (multiple-value-bind (a b c) (raw-approx-r x) a b c)))

(let ((pct *CREAL-TOLERANCE*)
(gx 0)
eps)

(if dg nil (setq dg *print-prec*))
(setq *creal-tolerance* [ceiling (10 ^ dg log 2)])
(setq eps [1/2 /r (10 ^ dg)])
(print (loop while (not (= 0 (sign (funcall f gx))))

doing (setq gx [eps *r 2 /r (funcall(f gx -r eps) -r funcall(f gx +r eps)) *r
funcall(f gx) +r gx])

collect gx))
(setq *creal-tolerance* pct)
gx)))

You can use this as follows. Execute common lisp (SBCL) in the directory where the down‑
loaded program is located and enter the following commands.

CL-USER> (eval-when (:compile-toplevel :load-toplevel :execute)
(ql:quickload :computable-reals)
(use-package :computable-reals))

To load "computable-reals":
Load 1 ASDF system:
computable-reals

; Loading "computable-reals"

T
CL-USER> (load "shnv1-1.lisp")
To load "trivial-arguments":

Load 1 ASDF system:
trivial-arguments

; Loading "trivial-arguments"

T
CL-USER> (load "nroot.lisp")
T
CL-USER> (setq *print-prec* 100)
100 (7 bits, #x64, #o144, #b1100100)
CL-USER> (nroot (lambda (x) [x /r cos-r x -r 1/100000]))
+0.00000999999999950000000005416666665915277777895696924583245698306007967
64914388791406617643427328713...
CL-USER>

First, specify the total precision you want to get. The computable‑reals package uses its
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own numerical specification called computable real, which allows infinite precision calcula‑
tions, rather than the floating‑point with fundamental errors. The value of the ∗print‑prec∗
variable represents the total number of digits, not just the number of significant digits. Also,
when inputting, expressions using decimal points such as 0.23 cannot be used, and only in‑
tegers or fractions can be entered. 0.23 should be entered as 23/100. This is to avoid the
inherent error problem in the commonly used floating‑point number representation speci‑
fication. In the example above, 1/100000 was entered as v/c, which is equivalent to 0.00001.
When using pi as an infinite precision value, the name provided by the package should be
used. The computable‑reals package, which implemented complete lazy evaluation in 1989
before Haskell, which is famous for its lazy evaluationmethod, even appeared, has been used
for over 40 years without significant changes in usage and has been sufficiently verified for
reliability, so it would be worth accepting some unfamiliarity.

The direction of the force felt by each star in a binary system can be considered symmetri‑
cal, so it is sufficient to calculate only one side. In reality, the velocities within a binary system
are determined by the gravitational constant and mass in relation to the distance between
the stars. However, this does not necessarily need to be accounted for in calculations The
acceleration required for maintaining circular motion can be assumed to result from a cause
other than gravity. Even in this scenario, the conservation of energy should not be violated by
increasing kinetic energy when gravity is transmitted at a finite speed. This is essential for re‑
solving the Laplace problem. If it can be shown that the Laplace problem is always solved for
any arbitrary velocity and corresponding acceleration, then it has been solved for the specific
case of gravity‑based velocity and acceleration as well.

To perform specific numerical calculations, If represent the expanded form

E⃗ =
q

4πε0r2
(
1 + ṙ

c

)2
(

1

1 + ṙ
c

(
1− v2

c2
+

a⃗ · r⃗
c2

)
r⃗

r
− 1

1 + ṙ
c

(
1− v2

c2
+

a⃗ · r⃗
c2

)
v⃗

c
− ra⃗

c2

)
of the previously calculated Feynman formula graphically, it is as shown below.
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Figure 78: The direction of the force in a binary star system

Let me explain the direction of the force in the binary star system shown in the diagram
and give the calculation result in advance. When one star is at Aτ and the other star is at Bτ in
the binary star system, the field generated at Aτ affects the B star at Bt along the r path. The
field is E, the sum of the r‑direction component plus the component in the opposite direction
of the velocity v at Aτ and the opposite direction of the acceleration ’a’ at Aτ. When this field
is felt at Bτ, it points slightly ahead of the center of the orbit or the current position of the A
star which is the direction that slightly decelerates the B star.

If the direction of the force is the past of At, there is a component that accelerates star B
even slightly, and energy conservation is not established, so the Laplace problem remains un‑
solved. And, the direction of the force cannot point exactly to the center of the orbit or the
direction of At. As previously calculated, a trigonometric function, which is a transcendental
function, appears in this angle calculation. If the direction of the center determined by the
trigonometric function can be expressed as the r, v, and a of direction vectors of Feynman’s
formula, this is the result of expressing the transcendental function as an algebraic function.
It is mathematically impossible.

The only remaining possibility is that if the direction of the force is slightly further into the
future than At, star B will feel some resistance and its orbital energy will decrease. And then,
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there’s another factor that can reduce orbital energy, namely, electromagnetic wave radia‑
tion or gravitational wave radiation. In this case, if the resistance component according to
the direction change of the force is greater than the resistance due to the wave radiation, the
Laplace problem still be unresolved. However, if the energy reduction due to the resistance
component due to the change in the direction of the force is smaller than the amount lost to
gravitational or electromagnetic wave radiation, the result will be one of two. Either the en‑
ergy loss due to the force direction and the wave radiation will be combined, or the energy
loss due to the force direction will be masked by the energy loss due to wave radiation. If the
energy losses are combined, the lawof conservation of energywill still be violated. Therefore,
the only remaining possibility to maintain the conservation of energy law is if the wave radia‑
tion effect overshadows the friction effect.

The concept that a certain energy loss is masked by another larger loss has not yet ap‑
peared in physics. However, unless the result of the transcendental function can be expressed
as an algebraic function, the force due to an electric field or gravity cannot precisely point to‑
ward the center of the circular orbit. Thus, it can only increase or decrease energy. If energy
is increased, there is noway to establish the law of conservation of energy. Evenwhen energy
is decreased, if it exceeds the loss due to wave radiation resulting from accelerated motion,
as calculated by the Larmor formula, it cannot be ignored. If energy simply disappears with‑
out any other effect, the law of energy conservation cannot be upheld. In the end, the only
way to maintain the law of energy conservation, even if it may seem forced, is to assume that
the energy consumed by resistance is less than the radiation energy according to the Larmor
formula and that it is included in it. Therefore, a direct calculation is necessary to confirm
whether the energy consumption due to the resistance component of the field is indeed less
than the field’s energy radiation due to acceleration.

In a circular orbit, v is the tangent vector of the circle at Aτ with an arbitrary velocity, and
the acceleration a is a value dependent on v in the formof v2

r , and its direction is fromAτ to the
center of the circle. Therefore, knowing only v and r, we can calculate the force and its direc‑
tion that arises fromAτ and affects Bt. To determine the direction, I will use the ”The direction
of the force in a binary star system” figure to find each component.

The magnetic field or the additional term of the previously discovered Lorentz force has
a force that precisely points toward the center of the circle in a circular motion, so there is
no resistance component. Therefore, it can be ignored. Besides, the force that maintains the
binary system does not necessarily have to be the force between the two stars, it could be a
physical string or something like a rail. So, there is no need to accurately describe the binary
motion, and it should not be done. In reality, a perfect uniform circularmotion cannot be sus‑
tained by itself due to energy radiation, such as electromagnetic or gravitational waves, and
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external energymust be added tomaintain it. Therefore, it is entirely legitimate to assume an
ideal situation and calculate only the necessary forces while omitting unnecessary details.

First of all, the following calculations are necessary in advance. It follows the figure of ”The
direction of the force in a binary star system”, but the radius of the circular orbit will be called
R to distinguish it from the r direction.

r = 2R cos θ

a =
v2

R

ṙ = −v⃗ · r⃗
r
= v sin θ

a⃗ · r⃗ = ar cos θ =
v2

R
2R cos θ cos θ = 2v2 cos2 θ

The x and y‑direction components are calculated through the force direction diagram in
the binary system, respectively, as follows.
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Finally, the angle φ of the field vector at Bt can be obtained from
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tanϕ =
Ey
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Now, i will find the angle of center, θ, and the angle of force, φ, of a binary system for

v=9999c/10000, v=c/2, v=c/10, v=c/100, v=c/10000, and v=c/100000000, respectively.

First, if the angles θ from Bt to the center of the circle are obtained with the common‑lisp
program, it is

CL-USER> (setq *print-prec* 80)
80 (7 bits, #x50, #o120, #b1010000)
CL-USER> (loop for i in'(9999/10000 1/2 1/10 1/100 1/10000 1/100000000)

collect (nroot (lambda (x) [x /r cos-r x -r i])))
(+0.73904096992784149842009277295660292864014156922029485014732271354005563251691328...
+0.45018361129487357303653869676268182732013650172305543401505849136364156698522338...
+0.09950534268738783481577354784178622555720388755521667951546674750794365368371520...
+0.00999950005415915395676999236483420598404766815205808975034755223694284492461535...
+0.00009999999950000000541666659152777895696922610284151349517116771524125383468111...
+0.00000000999999999999999950000000000000005416666666666665915277777777777895696925...)
CL-USER>

and the angles φ of the corresponding force are

(67)− >digits(60)

28

Type: PositiveInteger

(68) ‑> θ1 := 0.739040969927841498420092772956602928640141569220294850147323;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

) , [c = 1, v = 9999/10000, θ = θ1]

))
1.5706610149_8042923033_7335987772_8195857613_5659890874_027294838

Type: Expression(Float)

(69) ‑> θ2 := 0.450183611294873573036538696762681827320136501723055434015058;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2
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) , [c = 1, v = 1/2, θ = θ2]

))
0.6932110578_6567610228_0660508401_7288222560_3358879742_4039714387

Type: Expression(Float)
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(70) ‑> θ3 := 0.099505342687387834815773547841786225557203887555216679515466;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

) , [c = 1, v = 1/10, θ = θ3]

))
0.1021376679_7357788053_3296234329_8497973388_4996878549_2362462908

Type: Expression(Float)

(71) ‑> θ4 := 0.009999500054159153956769992364834205984047668152058089750347;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

) , [c = 1, v = 1/100, θ = θ4]

))
0.0100021663_7419238476_3529503499_3910446092_0418312358_8443285399_7

Type: Expression(Float)

(72) ‑> θ5 := 0.000099999999500000005416666591527778956969226102841513495171;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

) , [c = 1, v = 1/10000, θ = θ5]

))
0.0001000000_0216666663_7416666923_9087240474_4561638135_6663689546_388

Type: Expression(Float)

(73) ‑> θ6 := 0.000000009999999999999999500000000000000054166666666666659153;

atan
(
eval

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

) , [c = 1, v = 1/100000000, θ = θ6]

))
0.1000000000_0000002166_6666666666_6637416666_6666666692_3908730159E − 7

Type: Expression(Float)

It can be seen that at all speeds v, the angle of the direction of the force is always greater
than the angle θ at which the orbit passed the center, that is, the force felt by B is always in
the direction of the resistance force consuming the energy of the orbit, not in the direction of
increasing energy, which was first raised in the Laplace problem. Furthermore, it can be seen
that it includes the resistive force increases when the speed is extremely close to the speed of
light and becomes insignificant when it is close to the stationary state, showing the expected
result that the total force is almost approximated to the central force. I will now compare the
energy lost through this resistance with the energy lost through the radiation of waves.
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5.6 Orbital energy loss andwave radiation
Previously, in order to find the direction of the force, the intensity of each xy component of
the field with the moving Aτ as the source was obtained. This computes the full strength and
direction of the field in the xy coordinate system.

E⃗ = Exx̂+ Eyŷ

= q

16πε0R2 cos2 θ(1+ v sin θ
c )

2

((
1− v2

c2

)
x̂+

(
1

1+ v sin θ
c

(
1 + v2

c2
+ 2v

c sin θ
)

v
c cos θ

)
ŷ

)
This field can be represented by a component directed towards the center and the vertical

component to it, as well. The direction of the vertical component is the resistive force in the
direction opposite to the moving direction of B at Bτ.

E⃗ = ERR̂+ Eθθ̂ = |E⃗| cos(φ− θ)R̂+ |E⃗| sin(φ− θ)θ̂

From this, the magnitude of the resistance component in the orbital motion of star B is

|E⃗| sin(φ− θ) =
q sin(φ− θ)

16πε0R2 cos2 θ
(
1 + v sin θ

c

)2
√√√√(1− v2

c2

)2

+

(
1

1 + v sin θ
c

(
1 +

v2

c2
+ 2

v

c
sin θ

)
v

c
cos θ

)2

As this will be applied to the binary star systemproblem, we can assume that themagnitudes
of the velocities v of both stars A and B are equal, and the charges q are also identical. There‑
fore, it is sufficient to multiply this by q and v once more to calculate the energy loss at each
moment.

q2v sin(φ− θ)

16πε0R2 cos2 θ
(
1 + v sin θ

c

)2
√√√√(1− v2

c2

)2

+

(
1

1 + v sin θ
c

(
1 +

v2

c2
+ 2

v

c
sin θ

)
v

c
cos θ

)2

I will compare this with the Lamor formula

a2q2γ6

6c3πε0

(
1− v2

c2
sin2 θ

)
=

a2q2γ6

6c3πε0

(
1− v2

c2
(â× v̂)2

)
=

a2q2γ6

6c3πε0

(
1− v2

c2

)
=

a2q2γ4

6c3πε0

for circular motion. However, my goal is not to obtain exact values for the electromagnetic
force; rather, I’m interested incomparing themagnitudesof the twovalues todeterminewhether
the resistance due to the damping term in the electromagnetic or gravitational force, which is
caused by the resistance term in the retarded potential theory, will be overshadowed bywave
radiation even in the most extreme case of the binary star system. Therefore, I will eliminate
as many common elements as possible from both equations and focus solely on comparing
their magnitudes.
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q2v sin(φ−θ)
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I will compare the two values at different speeds using the above formula. First, I will enter
the expressions into the variables.

(70)− >digits(60);

D θ := atan

((
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)(

1+
v sin(θ)

c

)(
1− v2

c2

)
)
− θ;

Ex : = 1 ‑ v2

c2
;

Ey :=
(
1+ v2

c2
+2 v

c
sin(θ)

)
v
c
cos(θ)

1+
v sin(θ)

c

;
Type: Expression(Integer)

I will calculate the energy loss rate by substituting the actual values into the previously en‑
tered formulas.

• θi are the values for vi obtained with the lisp program above.

• fr is the orbital kinetic energy loss rate due to the resistive force, which is the force ex‑
cluding the central force among the forces calculated by the equation of the retarded
field.

• rr is the rate of energy loss due to electromagnetic/gravitational wave radiation calcu‑
lated by the Larmor formula.

Finally, fr/rr is calculated to compare the magnitudes of the two loss rates. As this value
does not exceed 1, it is shown that the wave radiation term covers the resistance term accord‑
ing to the retarded potential theory.
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(71)− >vi := 0.9999;

θi := 0.739040969927841498420092772956602928640141569220294850147323;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.0892399649_9479155013_2068787228_8956260953_4052218224_9655564873_8
8331666.7291687500_5208333320_3111978190_0390584307_4542854622_508
0.1071093790_6621598234_4131331874_3801346668_3445450804_4894916308 E ‑7

LISP output:
( )

Type: Tuple(Void)

(72)− >vi := 0.5;

θi := 0.4501836112948735730365386967626818273201365017230554340150583;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.0244051180_7920067373_6001260480_2983665554_7662164751_6962118644_2
0.0740740740_7407407407_4074074074_0740740740_7407407407_4074074074
0.3294690940_6920909543_6017016484_0279484989_3439224147_8988601697

LISP output:
( )

Type: Tuple(Void)

(73)− >vi := 0.1;

θi := 0.099505342687387834815773547841786225557203887555216679515466;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.0003242459_9695416441_8468171497_7894890778_8117225895_4766710373_687
0.0003401013_5020236030_3370404380_5053906064_0070741080_8420909431_011
0.9533805048_4432963962_1964654950_4347356940_1079300470_0558511753

LISP output:
( )

Type: Tuple(Void)
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(74)− >vi := 0.01;

θi := 0.009999500054159153956769992364834205984047668152058089750347;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.3332400252_3155156473_6493549399_3941077973_1737035689_8370085164 E ‑6
0.3334000100_0133350002_0002333600_0300033337_0004000433_3800050005 E ‑6
0.9995201416_7671652021_7185694163_3491689090_9695456800_2081940393

LISP output:
( )

Type: Tuple(Void)

(75)− >vi := 0.0001;

θi := 0.000099999999500000005416666591527778956969226102841513495171;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.3333333240_0000025238_0945835626_2676257775_2266045256_9138108882 E ‑12
0.3333333400_0000010000_0001333333_3500000002_0000000233_333336 E ‑12
0.9999999520_0000141714_2819564022_1284540402_6112258663_5520429297

LISP output:
( )

Type: Tuple(Void)
(76)− >vi := 0.00000001;

θi := 0.000000009999999999999999500000000000000054166666666666659153;

fr := eval
(

sin(Dθ)

8 cos(θ)2(1+ v
c sin(θ))2

√
Ex2 + Ey2, [c = 1, v = vi, θ = θi]

)
;

rr := eval
(

v3

3c3
(
1− v2

c2

)2 , [c = 1, v = vi]

)
;

print (fr), print (rr), print (fr / rr)
0.3333333333_3333324000_0000000000_0252380674_6031781694_164308759 E ‑24
0.3333333333_3333340000_0000000000_0100000000_0000000133_3333333333 E ‑24
0.9999999999_9999952000_0000000000_1417142023_8095343288_208878658

LISP output:
( )

Type: Tuple(Void)
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When the speed is high enough tobe comparable to the speedof light, the loss due towave
radiation is overwhelmingly large. However, the difference starts to decrease rapidly, and the
difference decreases to about the same unit around half the speed of light, and as the speed
slows down, it can be seen that the two values become very similar from around 0.1c. How‑
ever, the energy loss due to wave radiation is always slightly large.

This is a surprising result. It coincides too well to be an unrelated coincidence. To claim
there is a connection, this is a comparison of the computational result of a transcendental
function with that of an algebraic function, and the relation cannot be expressed by a finite
polynomial. The calculation started with the expectation that the loss due to wave radiation
would cover the loss term due to resistivity, but I couldn’t expect that it would cover this very
slightly. When the speed is very slow, it is practically the same. I think this is an example that
shows that nature is never completely mathematical, but it is as mathematical as possible.

According to this result, the energy emission rate of gravitational waves based on general
relativity, which was used to calculate the gravitational wave emission rate in the binary neu‑
tron star system PSR B1913+16 introduced earlier, is 64G4m5

5c5r5
. It is excessively small compared

to the energy emitted based on Maxwell’s gravity, making it impossible to overshadow the
losses calculated based on the concept of the retarded potential. Consequently, the Laplace
problem cannot be resolved, and this is one of the important pieces of evidence that general
relativity cannot be correct. If I consider whether there is any other way to solve the Laplace
problem that satisfies special relativity, which is completely different from the method pre‑
sented in this book derived from the concept of retarded potential, I cannot even imagine it.
I cannot think of any reason why nature should prepare different cumbersome mathematics
for each force. Forces should arise from the nature of spacetime, and therefore it is logical that
similar mathematical methods should be shared for similar problems, even if they are differ‑
ent types of forces.

Even if each force has its own mathematics, and we make the unreasonable assumption
that general relativity has a small resistance component of the force that can be masked by
the small gravitational wave emissivity in a different mathematical way, the difference be‑
tween the angles θ and φ becomes slightly smaller than that of the electromagnetic force.
This means that the direction of gravity is more accurately directed toward At, leading to the
absurd conclusion that the position of an object with an accelerating charge and mass, mea‑
sured by electrostatic force and by gravity, is different. There is no reason for such an absurd
phenomenon to exist. After all, in order for general relativity to be correct, at least two levels
of unnecessary complexity beyond imagination are required. I don’t believe nature provides
for such superfluity. Since general relativity does not fit the concept of retarded potential, one
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of the two must be wrong, and there is no possibility that the theory of retarded potential is
wrong. Therefore, I consider general relativity to be wrong.

Conversely, it is possible to question whether the gravitational wave emission rate is too
large. If the emission rate is large, the question may be why detecting gravitational waves is
so difficult. Actually, I’m not sure about the cause. I haven’t designed or attempted a gravita‑
tionalwavedetectionexperimentmyself or thoroughly reviewed theworkof others. However,
I can suggest a few basic factors that make detecting gravitational waves difficult.

The first challenge arises from the fundamental principle that gravitational waves affect
all matter equally, rendering single‑location detection impossible. To measure gravitational
waves, enormous structures tuned to theirwavelengths are needed, capable of detecting sub‑
tle changes in acceleration relative to distance. Furthermore, gravitational waves constitute
signals that are orders ofmagnitude smaller, typically around10‑30 to 10‑40 timesweaker, than
electromagnetic waves, making their detection exceptionally challenging.

The second is that if we consider an event such as a neutron star collision as a gravita‑
tional wave source that can be detected in cosmological phenomena, the difference between
the Schwarzschild radius and the radius of a neutron star near the mass of the Sun is only a
few tens of magnitude, so at that scale, the difference in strength between general relativity‑
based gravitationalwaves andMaxwellian gravity‑based gravitationalwaves is only a few tens
of magnitude. At that level, it is difficult to say that gravitational waves based on Maxwellian
gravity are clearly easier to detect.

Third, theuniverse is not transparent to gravitationalwavesbecause it is composedofmat‑
ter with a single polarity that is not neutral with respect to gravity. All stars, planets, and inter‑
stellar matter will absorb and scatter gravitational waves, so a gravitational wave signal will
quickly become noisy and difficult to interpret as evidence of gravitational waves, even if it is
slightly away from its source.

Considering these things, I suspect that detecting gravitational waves will become more
difficult thangeneral relativity‑based theories, but I’ll leave theexactdetails to future research.

The idea that I am now proposing that the loss of orbital energy due to resistance due to
the finite speed of propagation of the field is masked by another, larger term, wave radiation,
is hardly a mathematical idea. It is just a realistic, substantive physical idea. And the calcu‑
lations show a strange, slightly off, but realistic agreement that is sufficient to prove it. This
kind of idea is not actually new to physics. I see quantum theory as a product of a similar way
of thinking. Quantum theory is a theory that can never come out simply by mathematically

288



extending the concept of classical physics. I think there is already a precedent for a theory
that complements the limitations of classical theory andmathematics with realistic thinking.

And of course, this strange coincidence and slight discrepancy may essentially indicate
the imperfections of mathematics, but it may also be telling us about the incompleteness of
physical theories. It may be possible that there exists a theory that could fill in this tiny gap.
However, there will always be even finer gaps, and ultimately they will never be completely
filled.

The case of a circular orbital binary system of the same mass is the largest conceivable
case of the resistance component of the field according to the retarded potential theory, and
in other cases, the difference between the loss due to wave radiation and the resistance com‑
ponent of the field will be larger. In cases where the mass difference is similar to that of the
Earth and the Sun, the effect of the Laplace problem is so negligible that Laplace gave up try‑
ing to handle it directly and instead focused on the orbit of the Moon. However, the Earth is
also in an accelerated motion and is emitting gravitational waves accordingly. By calculating
and appreciating it, I try to conclude the Laplace problem.

Since the Earth is also close to a circular orbit, it is possible to use the Larmor formula as‑
suming a constant acceleration in a circular orbit. But, we have to use η instead of ε. Also,
since the output is always a positive number, we have to change the sign as well. Then the
formula is

−a2m2γ4

6c3πη
=

a2m2γ4

6c3π 1
4πG

=
2a2m2Gγ4

3c3
=

2v4m2G

3c3r2
(
1− v2

c2

)2
Substituting the speedof light c = 299792458m/s, the gravitational constantG = 6.67430e−

11m3Kg−1s−2, the Earth’s average orbital speed 29780m/s, the Earth’s average orbital radius
149597870700m, and the Earth’s mass 5.9736e24Kg,

(77) ‑> PL:=[c=299792458,G=6.67430e-11,v=29780,r=149597870700,m=5.9736e24]
[c = 2_99792458.0, G = 0.66743E − 10, v = 29780.0, r = 1495_97870700.0,

m = 5973600_0000000000_00000000.0]
Type: List(Equation(Polynomial(Float)))

(78) ‑> eval
(

2v4m2G

3c3r2
(
1− v2

c2

)2 , PL

)
2070964195.8712177347_5882254230_8379199191_3710703980_8297222483

Type: Fraction(Polynomial(Float))
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It has a large power output of about 2 gigawatts. However, on a global scale, this is much
smaller than the power consumption of a single metropolitan city, Seoul.

(79) ‑> Te := eval (12mv2, [m = 5.9736e24, v=29780]
)

2648_8388011200_0000000000_0000000000.0
Type: Polynomial(Float)

(80) ‑> Te / 2070964195.87 / 60 / 60 / 24 / 365 / 1.0 e 12
40557.9814221530_4209212684_7023449879_1656668045_4927328379_01691

Type: Polynomial(Float)

At this emission rate, it takes about 40 quadrillion years for the Earth to lose all of its kinetic
energy. So we don’t have to worry about the Earth falling into the Sun due to orbital energy
loss due to gravitational wave emission. In reality, there are factors that lose and gain much
larger orbital energy, and irrespective of whether or not orbital energy is lost, after several
billion years, which is only an instant compared to a few tens quadrillion years, it is said that
the Sun will become a red giant in several billion years, expanding beyond Earth’s orbit and
eventually engulfing it.

5.7 Summary
Having shown that Maxwellian gravitation with some modifications to the Lorentz force, can
solve a number of problems, I checked whether Maxwellian gravity solves the Laplace prob‑
lem, the problemof orbital stabilization by a force transmitted at the speed of light, which has
long been a subject of my curiosity in addition to the particle density function, the structure
of the universe.

In this process, it was confirmed that the Heaviside‑Feynman formula

E⃗ =
q

4πε0

[
er′

r′2
+

r
′

c

d

dt

(
er′

r′2

)
+

1

c2
d2

dt2
er′

]
for the field due to moving point charges and the Griffiths formula

E⃗ =
q

4πε0

r

(r⃗ · u⃗)3
((c2 − v2)u⃗+ r⃗ × (u⃗× a⃗))

for the field due to moving point charges are the same formulas that can be easily converted
into
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E⃗ =
q

4πε0r2
(
1 + ṙ

c

)3 ((1− v2

c2
+

a⃗ · r⃗
c2

)
r⃗

r
−
(
1− v2

c2
+

a⃗ · r⃗
c2

)
v⃗

c
−
(
1 +

ṙ

c

)
ra⃗

c2

)
form, and it was confirmed that all these formulas are the same as Purcell’s relativistic electric
field formula

E⃗ =
q

4πε0r2p

1− β2

(1− β2 sin2 θ)3/2
r̂p

due to point charges moving at a constant velocity.

Based on this, a solution that satisfies the condition that a force transmitted at a finite
speed of light can maintain an energy‑conserving orbital motion is that, in the case of a bi‑
nary system, the direction in which the field from the moving source of one star acts on the
opposite star is slightly future than the current position of the source star, and the direction
of the force is slightly resistive as seen from the side receiving the force, but the magnitude
of the energy loss due to the resistive force is less than the energy loss due to the gravita‑
tional wave emission, I conjectured that the Laplace problem could be solved bymasking and
integrating the effect of the resistive force into the effect of the gravitational wave emission.
The case of zero resistive force, the case where the force is directed exactly at the opposite
star, as in the case of linear motion, was ruled out at the conjecture stage. Since the function
that determines the position of the opposite star in the motion of a binary system involves a
trigonometric function, a transcendental function, itwas clear fromthebeginning that it could
not be expressed exactly as an algebraic function that determines the direction of the field. I
tried to verify this conjecture through specific calculations.

The result was as expected for the direction speculation and the assumption that the loss
due to radiation of thewavewould be greater than the loss due to resistance, but for themag‑
nitude itself, quite surprisingly, in the case of a binary systemwith the samemass and orbiting
a circle, it was confirmed that the loss due to wave radiation and the loss due to resistance
due to the finite speed of the field converged as the orbital speed slowed down. This means
that general relativity, which emits less gravitational wave energy compared to Maxwellian
gravity, cannot coexist with the theory of retarded potential. This unexpected result serves as
additional evidence against general relativity, adding to the various refutations of general rel‑
ativity discussed in this book. Of course, equal‑mass circular orbiting binary systems would
have the smallest gravitational wave emission and the largest drag due to force deflection. In
cases with different mass ratios or non‑circular orbits, as well as orbits deviating from perfect
circles, the difference between gravitational wave emissions and resistance force losses will
increase. But a correct theory should not break down in the worst case. Maxwellian gravity
is progressively consistent with its limits, but general relativity is not consistent with its limits
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but breaks down. This seems to be the most conclusive evidence against general relativity of
the various refutations of general relativity discussed in this book.

During this process, I examined intriguing hints about the connection betweenmathemat‑
ics and physics found in the derivation process of Feynman’s formula. Additionally, as the
preparation process, I attempted to provide explanations for the Liénard‑Wiechert potential
and the Lamor formula that I believe are clearer and more up‑to‑date than the old explana‑
tions that predate the theory of relativity, which are still included in electromagnetics text‑
books.

The derivation of expression

B⃗ =
r̂

c
× E⃗

for the magnetic field due to a moving point charge was not directly related to the Laplace
problem of planetary motion and its conservation of energy, but it was done in addition to
deal with an oddity that I discovered in the derivation of Feynman’s formula that might have
something to do with the limits of mathematics as applied to physics.

The discovery that at the very bottom of the process of formulating and describing force,
therewas amathematical incompleteness that Feynmanmissed or passed undisclosedwas a
meaningful experience inmanyways, and I think it gives us something to think about inmany
ways about the relationship between physics andmathematics.

I think this part is an important one that needs to be revisited from time to time in the pro‑
cess of discovering future physics theories.
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